Wednesday, December 25, 2019
Definition and Examples of Helping Verbs in English
In English grammar, a helping verb is aà verb that comes before the main verb (or lexical verb) in a sentence. Together the helping verb and the main verb form a verb phrase.à (A helping verb is also known as anà auxiliary verb.) A helping verb always stands in front of a main verb. For example, in the sentence Shyla can ride her sisters bicycle, the helping verb can stands in front ofà ride, which is the main verb. More than one helping verb can be used in a sentence. For example, in the sentence Shyla couldà haveà walked to school, there are two helping verbs: couldà and have. Sometimes a word (such as not) separates the helping verb from the main verb. For example, in the sentence Shyla does not want a new bicycle,à the negative particle not comes betweenà the helping verb does and the main verb want. Helping Verbs in English am, is, arewas, werebe, been, beingdo, does, didhave, has, hadmay, can, must, mightshall, willshould, would, could Examples and Observations [Some]à helping verbsà (forms of have, be, and do) may also function as main verbs. In addition, nineà modalà verbs (can, could, may, might, must, shall, should, will, would) function only asà helping verbs. Have, be, and do change form to indicate tense; the nine modals do not, according to Writing That Works.à Donkey in Shrek We can stay up late, swapping manly stories. Ralph Waldo Emerson Nothing great was ever achieved without enthusiasm. Antoine de Saint-Exupà ©ry Life has taught us that love does not consist in gazing at each other, but in looking outward together in the same direction. Isaac Bashevis Singer A pigeon landed nearby. It hoppedà on its little red feet and pecked into something that might have been a dirty piece of stale bread or dried mud. Stinky Pete I have always hated those upstart space toys. Functions of Helping Verbs According to the book, Basic Grammar and Usage, Helping verbs indicate shades of meaning that cannot be expressed by a main verb alone. Consider the differences in meaning in the following sentences, in which the helping verbs have been italicized: I may marry you soon.I must marry you soon.I should marry you soon.I can marry you soon. As you can see, changing the helping verb changes the meaning of the entire sentence. These differences in meaning could not be expressed simply by using the main verb, marry, alone. More Functions of Helping Verbs According to grammar expert C. Edward Good, Helping verbs...enable us to express various conditions: If he could type, he would write the next great American novel. Helping verbs help us express permission: You may go to the movie. Helping verbs help us express ones ability to do something: She can play golf extremely well. Helping verbs enable us to ask questions: Do you think he cares? Will he win the race? How to Use Helping Verbs to Change Active Voice to Passive Voice Susan J. Behrens explains in Grammar: A Pocket Guide, If the active sentence is in the past tense, then the full verb in the passive version will be as well: Monica groomed the poodle ââ â The poodle was groomed by Monica. 1. Monica moves to the end of the sentence; add by, so prepositional phrase is by Monica.2. The poodle moves to the front into the subject slot.3. Helping verb be is added in front of the main verb.4. Past tense marker jumps off groomed and onto helping verb be.5. Helping verb agrees with new subject (third person singular) was.6. Main verb groomed converts to its past participle form groomed. Sources Behrens, Susan J. Grammar: A Pocket Guide. Routledge, 2010. Choy, Penelope and Dorothy Goldbart Clark. Basic Grammar and Usage. 7th ed, Thomson, 2006. Good, C. Edward, A Grammar Book for You and Iââ¬âOops, Me!à Capital Books, 2002. Oliu, Walter E., Charles T. Brusaw, and Gerald J. Alred.à Writing That Works: Communicating Effectively on the Job. 10th ed,à Bedford/St. Martins, 2010. Singer, Isaac Bashevis. The Key. The New Yorker, 1970. Stinky Pete. Prospector in Toy Story 2, 1999.
Tuesday, December 17, 2019
Engish 125 - 2305 Words
Literary Comparison Jenna Sanders ENG125: Introduction to Literature (GSH1035D) Michelle Pinkard September 28,2010 People in all organizations and walks of life must have the ability to work in a team environment. Yet the world can not see that viewpoint sometimes, the idea that we all stand together in one fight. Thus creating conflict, the literary element I have chosen. Tuesday 9/11/01 by Lucille Clifton is the poem to represent the ongoing conflict of Man versus Society. In the last stanza of this poem it goes on to say ââ¬Å" and God has blessed America to learn that no one is exempt the world is one all fear is one all life all death all one.â⬠(Lucille Clifton; DiYanni, 2007) What happened to this country, and any other tragic caseâ⬠¦show more contentâ⬠¦Ã¢â¬Å"ââ¬ËIt has no Future--but itself-- Its Infinite contain Its Past--enlightened to perceive New Periods--of Pain.â⬠ââ¬â¢ (DiYanni, 2007, pp. 931) Again I read, Anna Akhmatova from Requiem/Dedication wrote, ââ¬Å" Such grief might make the mountains stoop, reverse the waters where they flow, but cannot burst these ponderous bolts that block us from the prison cells crowded with mortal woeâ⬠¦. For some the wind can freshly blow, for some the sunlight fade at ease, but we, made partners in our dread, hear but the grating of the keys and heavy-booted soldiers tread.â⬠First things first, poetic significance of Requiem cannot be understood or appreciated without appreciation of the context in which the poems that make it up were created. Anna herself and unfortunately her family members, given the widely known paranoid horrors and excesses of the Stalinist regime, together with the fact that she had been recognized as an important poet during the czarist period (Russia) and had always refused to write optimistic verse that glorified Soviet accomplishments. Only few people withstood this era in Russia and lived to tell about it. The stanza aforementioned, ties in with suffering because her grief was enough to stand out in her creative poetry than even she probably realized and at the same time, in her moment of life and the lives her family and her friends were being taken, she had to conceal her attitudes and beliefs, her distinguished way of living life was gone before her eyes, andShow MoreRelatedContemporary Indonesian Phonology and Morphology: Some Evidence of Language Change and Innovations7902 Words à |à 32 Pagesgap between the sound and the spelling, which is not typical of Indonesian. (62) a. bus [bis] or [bus] b. truk [trÃâ¢k] or [truk] c. plus [plÃâ¢s] or [plus] d. klub [klÃâ¢p] or [klap] The mass influx of Engish-based loanwords since the seventies has caused the use of Engish-based loanwords like sale take over the earlier existence of the possibly Dutch-based loanwords like obral. Tiket has taken over the position of karcis and dirigen is becoming less and less used and is replaced by konduktor
Monday, December 9, 2019
Geothermal Power Sustainable Thermal System
Question: Discuss about the Geothermal Power for Sustainable Thermal System. Answer: Introduction Bayer et al., (2013) stated that geothermal power is the power, which is produced by the geothermal energy. The technologies utilized for the geothermal power are dry stream power stations, binary cycle power stations as well as flash stream power stations. As of 2015, the capacity of the geothermal power is of amounts to 12.8 gigawatts (GW). This power is considered as sustainable renewable sources of energy as the removal of heat is small as evaluated with Earths heat content. Bertani (2012) argued that the interior of the earth is predictable to carry on very hot for billions of years, makes sure for limitless heat flow. Geothermal power plants are capturing heat as well as converting it into energy in electricity type. The below image demonstrates the basis of production of geothermal electric power and warm from the Earth. As there is a raise in a depth of Earth, the temperature also increases. Figure 1: Temperatures in the Earth (Source: Bayer et al., 2013, pp-451) Zarrouk and Moon (2014) discussed on the basic principles of this geothermal power are that heat will stream from the region, which is hotter than the region, which is cooler, but on no account the other way about. The earth captures the heat from the ray of the sun as well as stores it below the ground. With a couple of pipes, heat exchanger as well as a distribution system, it is easy to utilize the geothermal energy in most of the household's appliances. Conceptsof geothermal power generation system The low-temperature thresholds for generation of power are changing to advanced power generation technologies using fluids that heat at low temperature than water. Where the temperatures are inadequate to produce stream directly, a binary system approach is being used. Coskun, Bolatturk and Kanoglu (2014) reflected that in the non-volcanic regions, generations of power from geothermal resources are centred on the binary systems at lesser heat or expansion of Enhanced Geothermal System technologies (EGS) at the high temperature. According to Chamorro et al., (2012), currently the most widely recognized approach to capturing the energy from the geothermal resources is to tap it into actually happening hydrothermal convention system. Ghasemi et al., (2013) argued that in the particular system, the cooler water saturates the crust of the Earth, and afterward it is warmed up as well as rises to the surface. Once the warmed water is compelled to the surface, it is simple to capture the str eam as well as after that utilization it to make electric generators. Geothermal power plants are utilized to drill holes into the stone in order to capture stream. Technologies used in geothermal power generation Developed in the 1980s, the technology is being developed in the use of geothermal power plants through the globe in areas that consisted of lower resource temperatures (Stachel Wisniewski, 2015). The capability in order to utilize of lower temperature resources raises the number of the reservoirs that are used for a production of power. Bouncier et al., (2015) stated that there are three basic designs for the geothermal power plants, which are categorized as follows: Geothermal flash power plant: It generates power by using geothermal reservoirs of water that consist of temperature greater than 360 degrees Fahrenheit. Karlsdottir et al., (2015) opined that within this power plant, high-pressure separates stream from the water within stream separator when the pressure is dropped, and water is raised. The stream is delivered into a turbine and then it powers a generator. Any leftover water, as well as stream, are injected back to the reservoir and make it a sustainable resource (DiPippo, 2012). It is the most popular method to generate geothermal power. Figure 2: Geothermal flash power plant (Source: Karlsdottir et al., 2015, pp-507) Geothermal dry stream power plant: Buonocore et al., (2015) stated that it generates power by drawing stream from the underground resources. The stream is produced straightforwardly from the geothermal reservoir, and it is used to run the turbines, which control the generator. As there is no water, therefore the stream separator utilized in the flash is not required (Bertani, 2016). This power plant accounts for 50 percent installed geothermal capacity in Australia. The example for an underground resource for the stream is geysers. Figure 3: Geothermal dry stream power plant (Source: Buonocore et al., 2015, pp-479) Geothermal binary power plant: It generates power using water at a temperature of 225-360 degree Fahrenheit. Astolfi et al., (2014) opined that this power plant uses of geothermal water to heat up second liquid that simmers at low temperature. The exchange of heat divides the water from the working fluid while moving the heat energy. When the functioning fluid is vaporized, then the force of increasing vapor such as steam turns the turbine, which powers up the generator (Odum Zarrouk, 2015). After that, the geothermal water is re-injected into a congested loop and then it separates from a basis of groundwater with lowering the rate of emissions. Figure 4: Geothermal binary power plant (Source: Astolfi et al., 2014, pp-437) From the three used technologies for geothermal power generation, it is identified that the technological use of geothermal energy is electrical supply of power, sustainable power generation modes, power plants as well as heating and cooling. Pambudi et al., (2014) discussed that geothermal plants are very low planned as well as unplanned outage rates. The availability of the geothermal power is measured as some hours that a power plant is being accessible. It is kept in mind that the end goal is to deliver power partition by aggregate hours in a set of a time period, for the most part, a year of around 95 percent (Luo et al., 2014). It is then recognized that the geothermal power plants are accessible for an era of 95 percent of the time, taking into account the perceptions of the plant administrators. Advantages and disadvantages of available geothermal power technology Advantages of geothermal power technologies The following are advantages of geothermal power, which creates a protected environment, and it is exceptional sources of low-priced, easy, renewable as well as consistent power. Cost saving: Li et al., (2015) stated that the geothermal power is one of the renewable sources of energy. Due to a use of the current technologies, geothermal power engages low running cost, and it keeps 80 percent costs over the fossil fuels. No fuel is utilized for creation of power, and it does not need purchasing as well as transporting costs. No pollution: It is non-polluting, zero carbon as well as environmentally friendly. Guan, Hooman and Gurgenci (2016) discussed that due to renewable sources of energy, the power helps to reduce global warming as well as pollution. There is no consumption as well as a generation of by-products. It is not needy on the weather circumstances. Direct use of geothermal power: It is used directly. It is used for some of the purposes such as heating homes, cooking purposes. Alimonti and Soldo (2016) reflected on the statement that as it is directly used, therefore it is both cheaper as well as affordable. The initial investment is vertical but in the end with a huge saving of cost makes it functional. Less space and maintenance: Maintenance of the geothermal power plant is less. Geothermal heat pump systems are using 25 percent to 50 percent less electricity as conventional systems to heat or cool (Csanyi et al., 2010). It also requires a flexible design with less space for hardware is required. As geothermal power plants are not occupying much space, therefore it is used to protect the natural environment. Latest technological use: Due to technological advancement such as enhanced geothermal systems, it makes to have more resources exploitable as well as lowers the cost. Disadvantages of geothermal power technologies Location site issues: Only a few of the sites have the probable of geothermal energy. Most of the sites where the geothermal energy is being formed are distant from the cities. Therefore it requires consuming (Astolfi et al., 2014). Sometimes, it is lost due to long distance transmission of electricity. High installation cost: Installation of a cost of steam power plant is high. Guan, Hooman and Gurgenci (2016) opined that the installation of geothermal power system requires a certain amount of land for the system to be installed. Therefore, it makes impossible to implement geothermal systems for house owners within big cities. Csanyi et al., (2010) argued that there are no such guarantees that the quantity of energy that is formed will authenticate the capital spending as well as operational cost. Environmental issues: Sometimes, it releases harmful as well as poisonous gasses that escape through holes drilled during the construction (Ghasemi et al., 2013). The power plants are related to sulfur dioxide, silica emissions, as well as reservoirs, consists of toxic heavy metals. Sustainability issues: Odum and Zarrouk (2015) stated that reservoirs are exhausted if the liquid is being expelled speedier replaced. Efforts are given to infuse the liquid once again into the geothermal reservoir after the thermal energy is being used. The geothermal power is considered as sustainable if the reservoirs are aimed at efficiently. Stachel and Wisniewski (2015) opined that the bottom line is that geothermal power is regarded as environmentally friendly, reliable as well as sustainable. It makes the energy no-barrier but due to heavy installation cost, it may become a barrier sometimes. Research problems Geothermal power has some of the barriers which are required to overcome such as high temperature are concentrated in particular areas; it has lower capacity factor and site location issues. Coskun, Bolatturk and Kanoglu (2014) stated that due to those identified barriers, it gives negative impacts on the research and environment. The negative impacts are related to hot water as well as gasses released into the environment. Technological barriers lie in high exploitation, a high cost of investment for production of electricity as well as a risk of failure during exploitation. Ghasemi et al., (2013) argued that sometimes, regulation, as well as administrative procedures, is the obstacles that do not encourage application as well as diffusion of renewable energy. The main problems that are required to overcome are an improvement in resource assessment as well as forecasting, improvement in drilling technologies, system integration, and environmental impact mitigation. Bertani (2016) opined that further research is undertaken, technology advances are made as well as literature becomes available in the findings of the study might require reviewing as well as re-evaluate. In the research, where the gaps of the information are identified, they are noted, and recommendations are made for future study. Pambudi et al., (2014) argued that the problem with the generation of power is wastage of heat, which is excess stream are produced when transforming the geothermal energy to power. One of the solutions for this problem is environmental legislature assign restraints with an addition of cooling ponds near the extraction site. Li et al., (2015) reflected that the geothermal energy focuses on the current status of research on energy regards of different technologies. Goals and future prospects Geothermal power has played a potential part in moving Australia toward a more sustainable energy system. It is considered as one of the renewable energy advancements that provide consistent and additionally base load powers. Alimonti and Soldo (2016) opined that among three power plants, binary geothermal plants are utilized as an adaptable source of energy keeping in mind the end goal to adjust the variable supply of renewable resources. This kind of plant has the ability to incline generation up and also down different times every day, from 100 percent of nominal power down to least of 10 percent (DiPippo, 2012). In the future, in order to use of geothermal power, two of the emerging technologies need further development such as: Enhanced geothermal systems: Geothermal heat happens under the surface of the earth and the way to capture the heat within the dry areas is defined as enhanced geothermal systems. Csanyi et al., (2010) stated that this technology consists of challenges such as securing well commercial productivity, minimize cooling as well as water loss are required to overcome before it is viable. As this system offers a promise of worldwide distribution, therefore it is most potential for future use. Co-production of geothermal power within oil as well as gas wells: The lower temperature of geothermal energy is being resulting from a geothermal liquid that is originate at temperatures of 150 degrees. Buonocore et al., (2015) expressed that the geothermal resources are used for direct utilize applications, for example, warming of a building. In any case, it produces power through double cycle procedures of geothermal. Oil and gas segments are on the item, which represents to a huge capability of sources of this kind of geothermal energy. Coskun, Bolatturk and Kanoglu (2014) argued that in existing oil and in gas reservoirs, a huge measure of higher-temperature water is available that takes into consideration co-generation of geothermal power alongside the removal of oil as well as gas resources (Huddlestone-Holmes, 2014). In some of the cases, the misuse of the geothermal resources upgrades the oil and gas extraction. Convective or hydrothermal systems: The hydrothermal resources are raised when hot water is created in fractured rock at low to modest depths as an outcome of intrusion within the earths crust (Bertani, 2012). Hot molten rocks heat high temperature of hydrothermal resources. More than 9000 MW of the power is being generated from the conventional geothermal reservoirs. Zarrouk and Moon (2014) stated that the countries should have a possibility to produce 10,000 to 30,000 MW, excluding the hydrothermal systems are commercially demoralized for decades. Even its growth hampers by limited distribution worldwide. Conclusion It is concluded that the geothermal power minimizes the air pollution such as the new state of ability geothermal binary cycle plants are produced no air emissions. It is also seen that all the geothermal energy are the renewable sources of energy as the rate of extraction of heat from the earth does not exceed the rate at which the thermal reservoir it depends on upon is revitalized by the earths heat. It is recommended that improvement over enhanced geothermal system technologies is one of the prospects which become competitive, even untapped geothermal resources are developed. The paper reflects that the most common method to capture the energy from the geothermal sources is to tap into the hydrothermal system wherever the cooler water is heated up as well as rises to the surface. Some of the technological barriers lie in this research is high exploitation, a high cost of investment for production of electricity as well as a risk of failure during exploitation. References Alimonti, C., Soldo, E. (2016). Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger.Renewable Energy,86, 292-301. Astolfi, M., Romano, M. C., Bombarda, P., Macchi, E. (2014). Binary ORC (Organic Rankine Cycles) power plants for the exploitation of mediumlow temperature geothermal sourcesPart B: Techno-economic optimization.Energy,66, 435-446. Bayer, P., Rybach, L., Blum, P., Brauchler, R. (2013). Review on life cycle environmental effects of geothermal power generation.Renewable and Sustainable Energy Reviews,26, 446-463. Bertani, R. (2012). Geothermal power generation in the world 20052010 update report.Geothermics,41, 1-29. Bertani, R. (2016). Geothermal power generation in the world 20102014 update report.Geothermics,60, 31-43. Buonocore, E., Vanoli, L., Carotenuto, A., Ulgiati, S. (2015). Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plant in Italy.Energy,86, 476-487. Chamorro, C. R., Mondjar, M. E., Ramos, R., Segovia, J. J., Martn, M. C., Villaman, M. A. (2012). World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies.Energy,42(1), 10-18. Coskun, A., Bolatturk, A., Kanoglu, M. (2014). Thermodynamic and economic analysis and optimization of power cycles for a medium temperature geothermal resource.Energy Conversion and Management,78, 39-49. Csanyi, Ãâà ½., Kristof, V., Kusnir, S., Katin, M., Marci, M. (2010). Geothermal Energy.Intensive Programme Renewable Energy Sources May. DiPippo, R. (2012).Geothermal power plants: principles, applications, case studies and environmental impact. Butterworth-Heinemann. Ghasemi, H., Paci, M., Tizzanini, A., Mitsos, A. (2013). Modeling and optimization of a binary geothermal power plant.Energy,50, 412-428. Guan, Z., Hooman, K., Gurgenci, H. (2016). Dry Cooling Towers for Geothermal Power Plants.Alternative Energy and Shale Gas Encyclopedia, 333-349. Huddlestone-Holmes, C. (2014). Geothermal Energy in Australia. Karlsdttir, M. R., Plsson, . P., Plsson, H., Maya-Drysdale, L. (2015). Life cycle inventory of a flash geothermal combined heat and power plant located in Iceland.The International Journal of Life Cycle Assessment,20(4), 503-519. Li, K., Bian, H., Liu, C., Zhang, D., Yang, Y. (2015). Comparison of geothermal with solar and wind power generation systems.Renewable and Sustainable Energy Reviews,42, 1464-1474. Luo, C., Lu, Z., Gong, Y., Ma, W. (2014). Thermodynamic parameter matching ability of geothermal flash-binary power system.Journal of Renewable and Sustainable Energy,6(3), 033126. Odum, E. O., Zarrouk, S. (2015). Efficiency of Geothermal Binary Power Plants: a Worldwide Review Update.International Journal on Energy Conversion (IRECON),3(1), 17-26. Pambudi, N. A., Itoi, R., Jalilinasrabady, S., Jaelani, K. (2014). Exergy analysis and optimization of Dieng single-flash geothermal power plant.Energy Conversion and Management,78, 405-411. Stachel, A. A., WiÃâ¦Ã¢â¬ ºniewski, S. (2015). Influence of the type of working fluid in the lower cycle and superheated steam parameters in the upper cycle on effectiveness of operation of binary power plant.Archives of Thermodynamics,36(1), 111-123. Zarrouk, S. J., Moon, H. (2014). Efficiency of geothermal power plants: A worldwide review.Geothermics,51, 142-153.
Monday, December 2, 2019
Inflation Essays (1274 words) - Inflation, Deflation, Hyperinflation
Inflation ?INFLATION? Inflation, in economics, is used to describe an increase in the value of money; in relation to the goods and services it will buy. Inflation is the sustained rise in the aggregate level of prices measured by an index of the cost of various goods and services. Repetitive price increase cause the purchasing power of money and other financial assets with fixed values, creating serious economic uncertainty. Inflation results when actual economic pressures anticipation of future developments cause the demand for goods and services to exceed the supply available at existing prices or when available output is restricted by undecided productivity and marketplace constraints. Constant price increases were historically linked to wars, poor harvests, political upheavals, or other unique events. Examples of inflation have occurred throughout history, but detailed records are not available to measure trends before the Middle Ages. Economics historians have identified the 16th to early 17th centuries in Europe as a period of long-term inflation. Major changes occurred during the American Revolution, when prices in the U.S. rose an average of 8.5 percent per month, and during the French Revolution, when prices in France rose at a rate of 10 percent per month. Theses relatively brief events were followed by long periods of alternating international inflations and deflations linked to specific political and economic actions. The U.S. reported average annual price changes as follows: 1790 to 1815- up 3.3 % 1815 to 1850- down 2.3 % 1850 to 1873- up 5.3 % 1873 to 1896- down 1.8 % 1896 to 1920- up 4.2 % 1920 to 1934- down 3.9 % Consumer prices accelerated during the World War 11 era, rising at an average rate of 7.0% from 1940 to 1948, and then stabilizing from 1948 to 1965, when annual increases averaged only 1.6 percent. There is various kind of inflation. When upward trend of prices is gradual and irregular, averaging only a few percentage points each year, inflation is not considered a serious threat to economic and social progress. It may even stimulate economic activity: The illusion of personal income growth beyond actual productivity may encourage consumption; housing investment may increase in anticipation of future price appreciation; business investment in plants and equipment may accelerate as prices rise more rapidly than cost; and personal, business, and government borrowers realize that loans will be repaid with money that has potentially less purchasing power. A greater concern growing is chronic inflation. Chronic inflation tends to become permanent moving upward to even higher levels as economic distortions and negative expectations are brought on. To accommodate chronic inflation, normal economic activities are disrupted: Consumers buy goods and services to avoid even higher prices, real estate speculation increases; businesses concentrate on short-term investments; governments rapidly expand spending in anticipation of inflated revenues; and exporting nations suffer competitive trade disadvantages forcing them to turn to protectionism currency controls. In the extreme form, chronic price increases become hyperinflation, causing the entire system to break down. During a hyperinflation the growth of money and credit becomes explosive, destroying any links to real assets and forcing a trust on complex barter arrangements. As the governments try to pay for increased spending programs by rapidly expanding the money supply, the inflationary financing of budget deficits disrupts economic, social, and political stability. There are many causes of inflation. The demand -pull inflation occurs when aggregate demand exceeds existing supplies, forcing price increases and pulling up wages, materials, and operating and financing costs. Cost-push inflation occurs when prices rise to cover total expenses and preserve profit margins. A persistent cost-price spiral eventually develops as groups and institutions respond to each new round of increases. Deflation occurs when the spiral effects are reversed. To explain why the basic supply and demand elements change, economists have suggested three substantive theories: the available quantity of money; the aggregate level of incomes; and supply-side productivity and cost variables. Monetarists believe that changes in price levels reflect fluctuating volumes of money available, usually defined as currency and demand deposits. They argue that, to create stable prices, the money supply should increase at a stable rate matching with the economy's real output capacity. C ritics of this theory claim that changes in the money supply are a response to, rather than the cause of, price-level
Subscribe to:
Comments (Atom)